Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: where it is shown how finite oligomer chains tend to the infinite periodic polymer.
نویسندگان
چکیده
The longitudinal polarizability, α(xx), and second hyperpolarizability, γ(xxxx), of polyacetylene are evaluated by using the coupled perturbed Hartree-Fock/Kohn-Sham (HF/KS) scheme as implemented in the periodic CRYSTAL code and a split valence type basis set. Four different density functionals, namely local density approximation (LDA) (pure local), Perdew-Becke-Ernzerhof (PBE) (gradient corrected), PBE0, and B3LYP (hybrid), and the Hartree-Fock Hamiltonian are compared. It is shown that very tight computational conditions must be used to obtain well converged results, especially for γ(xxxx), that is, very sensitive to the number of k(->) points in reciprocal space when the band gap is small (as for LDA and PBE), and to the extension of summations of the exact exchange series (HF and hybrids). The band gap in LDA is only 0.01 eV: at least 300 k(->) points are required to obtain well converged total energy and equilibrium geometry, and 1200 for well converged optical properties. Also, the exchange series convergence is related to the band gap. The PBE0 band gap is as small as 1.4 eV and the exchange summation must extend to about 130 Å from the origin cell. Total energy, band gap, equilibrium geometry, polarizability, and second hyperpolarizability of oligomers -(C(2)H(2))(m)-, with m up to 50 (202 atoms), and of the polymer have been compared. It turns out that oligomers of that length provide an extremely poor representation of the infinite chain polarizability and hyperpolarizability when the gap is smaller than 0.2 eV (that is, for LDA and PBE). Huge differences are observed on α(xx) and γ(xxxx) of the polymer when different functionals are used, that is in connection to the well-known density functional theory (DFT) overshoot, reported in the literature about short oligomers: for the infinite model the ratio between LDA (or PBE) and HF becomes even more dramatic (about 500 for α(xx) and 10(10) for γ(xxxx)). On the basis of previous systematic comparisons of results obtained with various approaches including DFT, HF, Moller-Plesset (MP2) and coupled cluster for finite chains, we can argue that, for the infinite chain, the present HF results are the most reliable.
منابع مشابه
Static and dynamic coupled perturbed Hartree-Fock vibrational (hyper)polarizabilities of polyacetylene calculated by the finite field nuclear relaxation method.
The vibrational contribution to static and dynamic (hyper)polarizability tensors of polyacetylene are theoretically investigated. Calculations were carried out by the finite field nuclear relaxation (FF-NR) method for periodic systems, newly implemented in the CRYSTAL code, using the coupled perturbed Hartree-Fock scheme for the required electronic properties. The effect of the basis set is als...
متن کاملCoupled perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds
The Coupled Perturbed Hartree-Fock (CPHF) scheme recently implemented in the CRYSTAL06 code for systems periodic in 1-3 dimensions has been generalized to Density Functional Hamiltonians (CPKS, Coupled Perturbed Kohn-Sham). The dielectric tensor of Magnesium Oxide, Diamond, and Silicon is calculated with four different Hamiltonians, ranging from DFT, in the local density and gradient corrected ...
متن کاملThe calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code
The Coupled Perturbed Hartree-Fock (CPHF) scheme has been implemented in the CRYSTAL06 program, that uses a gaussian type basis set, for systems periodic in 1D (polymers), 2D (slabs), 3D (crystals) and, as a limiting case, 0D (molecules), which enables comparison with molecular codes. CPHF is applied to the calculation of the polarizability alpha of LiF in different aggregation states: finite a...
متن کاملA physical model for the longitudinal polarizabilities of polymer chains.
The aim of this work is to provide a physical model to relate the polarizability per unit cell of oligomers to that of their corresponding infinite polymer chains. For this we propose an extrapolation method for the polarizability per unit cell of oligomers by fitting them to a physical model describing the dielectric properties of polymer chains. This physical model is based on the concept of ...
متن کاملAnharmonicity contributions to the vibrational second hyperpolarizability of conjugated oligomers
Restricted Hartree–Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers—polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 136 11 شماره
صفحات -
تاریخ انتشار 2012